
LLNL-CONF-502592

Runtime Detection of C-Style
Errors in UPC Code

P. Pirkelbauer, C. Liao, T. Panas, D. Quinlan

October 3, 2011

PGAS 2011
Galveston, TX, United States
October 15, 2010 through October 18, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Runtime Detection of C-Style Errors in UPC Code

Peter Pirkelbauer
Lawrence Livermore National

Laboratory
peter.pirkelbauer@llnl.gov

Chunhua Liao
Lawrence Livermore National

Laboratory
liao6@llnl.gov

Thomas Panas
Microsoft

Parallel Data Warehousing
tpanas@microsoft.com

Dan Quinlan
Lawrence Livermore National Laboratory

dquinlan@llnl.gov

Abstract
Unified Parallel C (UPC) extends the C programming language
(ISO C 99) with explicit parallel programming support for the
partitioned global address space (PGAS), which provides a global
memory space with localized partitions to each thread. Like its
ancestor C, UPC is a low-level language that emphasizes code
efficiency over safety. The absence of dynamic (and static) safety
checks allows programmer oversights and software flaws that can
be hard to spot.

In this paper, we present an extension of a dynamic analysis
tool, ROSE-Code Instrumentation and Runtime Monitor (ROSE-
CIRM), for UPC to help programmers find C-style errors involving
the global address space. Built on top of the ROSE source-to-
source compiler infrastructure, the tool instruments source files
with code that monitors operations and keeps track of changes to
the system state. The resulting code is linked to a runtime monitor
that observes the program execution and finds software defects.

We describe the extensions to ROSE-CIRM that were necessary
to support UPC. We discuss complications that arise from parallel
code and our solutions. We test ROSE-CIRM against a runtime
error detection test suite, and present performance results obtained
from running error-free codes. ROSE-CIRM is released as part of
the ROSE compiler under a BSD-style open source license.

1. Introduction
A 2002 NIST study on the economic impact of software flaws
(bugs) [18] reports that about half of a software project’s budget
is spent on testing. The same study estimates that software bugs
cost the US economy 59.5 billion dollars (0.6% of 2002’s GDP)
annually. Software flaws cause programs to behave in undesirable
ways. They originate from oversights and human misjudgments in
the software development life cycle. Software flaws also arise from
operations exhibiting undefined or unspecified behavior. Such be-
havior describes operations where the language designer deliber-
ately did not specify the behavior. While software frequently con-

[Copyright notice will appear here once ’preprint’ option is removed.]

tains flaws, the size and complexity of modern software makes the
detection of such flaws difficult.

Reducing the number of software flaws is an effort that per-
meates all stages in software development. For example, adopting
rigid coding standards and restricting programming languages to
a safe subset can eliminate error-prone coding techniques. Static
and dynamic code analysis tools code are also used to reduce soft-
ware flaws. Static analysis tools utilize source code (style) anal-
ysis or formal analysis techniques such as dataflow analysis, ab-
stract interpretation, and model checking. Static analysis tools do
not influence the running programs but often state space, imple-
mentation techniques, and language semantics make precise analy-
sis intractable. Dynamic analysis tools find bugs by observing the
behavior of running programs. This is typically accomplished by
code instrumentation (source or binary) or by replacing (built-in)
library functions (e.g., malloc) with custom implementations. Dy-
namic analysis operates with concrete values and is not prone to
combinatorial state explosion. The downside of dynamic analysis
tools is that monitoring running programs impacts performance.
The quality of the results depends on the tests’ input data and cov-
ered program paths.

Unified Parallel C (UPC) [22], an extension of the C program-
ming language for parallel programming, is prone to vulnerabilities
inherited from its C ancestor (e.g., array out of bounds accesses,
dereferences of dangling pointers, the use of uninitialized vari-
ables, arithmetic overflow and underflow, string termination, etc.)
and vulnerabilities introduced by parallel programming (e.g., race
conditions, dead locks, etc.). While safer programming language,
compiler, and tool support are desirable, economic, performance,
compatibility, and portability reasons prevent safety mechanisms
from receiving more attention.

In this paper we present an extension of an existing dynamic
analysis tool, ROSE-CIRM, for UPC. The previous ROSE-CIRM
tool [20] monitors ISO C and ISO C++ programs and detects run-
time errors. In this work, we extend ROSE-CIRM to find similar
C-style errors in UPC code. The presented tool is able to identify
uninitialized memory accesses, dangling pointers, erroneous heap
allocation/ deallocations, and out of bounds array accesses in par-
allel programs using UPC’s shared memory space. We tested our
tool for its accuracy and overhead using the RTED benchmark test
suite [14] for UPC and a few error-free sample programs [7].

The contributions of this paper include 1) a first monitored
execution environment for UPC, 2) compiler-based automatic code
instrumentation of UPC source code, 3) a runtime library to record
and check UPC programs’ state, 4) evaluation based on a runtime

1 2011/9/29

error benchmark suite, and 5) analysis of the runtime monitor’s
overhead and optimizations that reduce its overhead.

The rest of this paper is structured as follows: §2 provides
background information on the Unified Parallel C (UPC) language
and ROSE-CIRM for C/C++. §3 describes our extensions to ROSE-
CIRM for UPC. §4 discusses the programs tested by our tool and
obtained results. §5 gives an overview of other dynamic tools for
detecting bugs. §6 concludes the paper and provides an outlook on
future improvements.

2. Background
This section provides background information on the UPC lan-
guage, on the ROSE compiler, and on our ROSE-based runtime
error detection tool implementation for C and C++.

2.1 Unified Parallel C
The PGAS programming model offers a global memory space
with localized partitions to each thread. UPC extends the ISO C
programming language with parallel constructs for the partitioned
global address space. Fig. 1 depicts a typical memory layout for a
UPC program.

Figure 1. UPC memory layout

A UPC program consists of THREADS number of threads.
Each thread contains its own stack and heap, where it has exclusive
access. In addition, each UPC thread owns a portion of the global
address space (shared heap memory). Any thread can access the
entire shared heap using random reads and writes.

To control which data is private and which data can be accessed
from other UPC threads, UPC introduces a new type qualifier
(shared). For arrays, UPC allows the specification of a blocking
factor, that determines how many consecutive elements are stored
within the same shared region. Consider the following example:

1 shared int i; // a shared integer variable
shared[2] int arr[4∗THREADS]; // uses blocks of integers

The first declaration allocates a single integer variable in the
shared space (within Thread 0). The second declaration defines an
array of integers with 4*THREADS elements (The built-in constant
THREADS returns the number of UPC threads). Each thread owns
four elements of the array. The blocking factor is 2, thus the first
and second element are located in Thread 0, the third and fourth in
Thread 1, and so on.

UPC offers three kind of pointers: 1) C-style pointers (private
to private) point to an address within an UPC’s local address space,
including its local portion of the shared space; 2) pointers to shared
memory (private to shared) can address the entire global space
(usable only by the owning thread); and 3) shared pointers to
shared memory (shared to shared) can be used by any UPC thread.
Example UPC pointers are shown below:

int∗ private to private;
2 shared int∗ private to shared;

shared int∗ shared shared to shared;

Three functions in UPC are available for dynamically allocating
memory in the shared space. upc alloc allocates all memory within
the shared memory of a single thread, upc global alloc distributes
the memory according to a specified blocking factor (the following

1 shared[2] int arr[4∗THREADS];
shared const int len = sizeof(arr)/sizeof(arr[0]);

3// a[i] is initialized by the thread owning a[i]
5 upc forall(int i = 0; i < len; ++i; &a[i]) a[i] = rand();

7// a[i] is initialized by Thread (i % THREADS)
upc forall(int i = 0; i < len; ++i; i) a[i] = rand();

9// all threads execute the loop body
11 upc forall(int i = 0; i < len; i+=THREADS;) a[i+MYTHREAD] = rand();

Figure 2. UPC parallel for loop

code snippet prints the blocking factor in blue), and upc all alloc

is a collective version of upc global alloc.
A locking mechanism is provided by UPC to protect critical re-

gions. UPC defines the opaque type upc lock t, together with oper-
ations to enter (upc lock, upc lock attempt), exit (upc unlock), al-
locate (upc global lock alloc and the collective version
upc all lock alloc), and deallocate (upc lock free).

UPC threads can be synchronized with upc barrier. UPC also
provides the pair upc notify / upc wait implementing a split phase
barrier. Split phase barriers help writing code that overlaps compu-
tation and communication. Memory consistency can be controlled
using upc fence. In addition, UPC can control the memory consis-
tency of files, scopes, and objects using pragmas and qualifiers.

UPC provides a parallel loop statement (upc forall).
upc forall’s syntax extends C’s for loop syntax with a fourth
argument (the affinity expression) controlling which UPC thread
will execute a specific loop iteration. Fig. 2 shows three versions of
a upc forall loop initializing all elements of a globally-declared
shared array with random values. Each array element is written
exactly once. In the first version, the thread whose shared mem-
ory owns a[i] executes the assignment. In the second version,
the thread is determined by the result of the modulo division
i%THREADS. In the last version, the loop counter is incremented
in steps (THREADS). On the omission of an affinity expression, all
threads execute each loop iteration. Note MYTHREAD returns the UPC
thread number.

2.2 The ROSE Compiler Infrastructure
ROSE [19], developed at Lawrence Livermore National Labora-
tory, is an open source compiler infrastructure to build both source
and binary program transformation and analysis tools for large-
scale Fortran 77/95/2003, C, C++, OpenMP, and UPC applications.

As shown in Figure 3, ROSE can process both source code and
binary executables (x86, Power-PC, ARM instruction sets) as in-
put with help from source parsers (EDG [6] and Open Fortran
Parser [4]) and binary disassemblers (such as IDA Pro [10]). Lever-
aging the EDG C++ frontend, ROSE currently supports all UPC
constructs as defined in UPC 1.2, and non-standard Berkeley UPC
extensions (defined in the UCB bupc extensions.h)

Internally, ROSE generates a uniform abstract syntax tree (AST)
as its intermediate representation (IR) for both source and binary
input. Sophisticated compiler analyses and transformations are

C/UPC/C++

Source Code Analyzed/
Transformed Code

EDG Front-end/
Open Fortran Parser

IR
(AST)Binary

Disassembler

Unparser

ROSE Compiler
Infrastructure

2009 Winner

www.roseCompiler.org

Transformations

ROSE-based Tools

Analyses Optimizations

Fortran/OpenMP

Software
BinaryCode

Figure 3. ROSE compiler infrastructure

2 2011/9/29

Figure 4. The ROSE-CIRM tool architecture

developed on top of the AST and encapsulated as simple func-
tion calls, which can be readily reused by tool developers. Ex-
ample analyses include control flow analysis, data flow analysis,
call graph analysis, and dependence analysis. Representative trans-
formations include code instrumentation, inlining, outlining, loop
transformation, and automatic parallelization.

ROSE is particularly well suited for building custom tools for
static analysis, program transformation, and optimizations, etc. The
ROSE team was awarded the prestigious R&D 100 Award in 2009,
for significant contributions of making compiler techniques more
accessible. ROSE is released under a BSD-style license.

2.3 ROSE-CIRM Tool
ROSE-CIRM [20] is a dynamic analysis tool that consists of a
source code instrumentation tool built using ROSE and a runtime
library. Fig. 4 illustrates the workflow of using ROSE-CIRM, in-
cluding instrumentation, compilation, and monitored execution.

During code instrumentation, ROSE-CIRM identifies a pro-
gram’s source locations that require interaction with the runtime
monitor and inserts calls to the runtime library. Such locations in-
clude statements declaring and accessing variables, places where
scopes are entered and exited, locations allocating and deallocat-
ing memory, and places where functions are invoked, etc. At these
locations, the runtime functions are inserted to record the system
state and/or check if there are any errors. Using source code in-
stead of binary code allows the checking mechanism to utilize high
level type informations such as array bounds.

The code instrumentation phase is implemented through the
transformation of an input’s program AST. ROSE-CIRM uses the
top-down AST traversal mechanism in ROSE to visit all nodes. De-
pending on a node’s type and its context, source locations where in-
strumentation is needed will be identified and corresponding func-
tion calls will be inserted.

Fig. 5 illustrates the elementary mechanism: transformations are
implemented by an InstrumentationVisitor. The example shows
operations on ROSE basic blocks (i.e., a statement sequence en-
closed by {}) and variable references. Basic block entries and exits
are instrumented to keep track of local variables’ lifetime. Variable
references are instrumented to keep track of uninitialized variables.
Hereby, the function readWriteContext determines whether a vari-
able is used in a read or write context.

1 struct InstrumentationVisitor {
...

3 void handle(SgBasicBlock& block) {
instrument block entry(block);

5 instrument block exit(block);
}

7 void handle(SgVarRefExpr& var) {
9 Context ctx = readWriteContext(var);

if (ctx) instrument variable access(var, ctx);
11 }
};

Figure 5. Instrumentation pass

Function Action Description
Dynamic Memory

cirmAllocMem U Saves data about a heap allocation.
cirmFreeMemory UC Checks memory deallocations.

Stack Memory
cirmCreateVariable U Keeps track of variables.
cirmInitVariable U Marks a memory location as ini-

tialized.
cirmAccessVariable C Checks that a memory location ex-

ists and is initialized.
cirmEnterScope U Record a new scope context (upon

function or block entry).
cirmExitScope UC Deletes a scope context and all

memory associated with it. Check
for dangling pointers to disap-
peared memory.

Arrays and Pointers
cirmCreateArray U Saves data about arrays allocated

on the stack.
cirmAccessArray C Checks if the access is within array

bounds. It also optionally checks if
location has been initialized.

cirmMovePointer UC Validates a pointer update.
Others

cirmRegisterTypeCall U Saves data about the structure of
user defined data types.

cirmClose C Closes the runtime monitor.

Table 1. Representative runtime-monitor interface for UPC

The instrumentation inserts calls to the runtime monitor. Ta-
ble 1 shows the runtime monitor’s interface supporting dynamic
analysis of dynamic memory, stack memory, arrays and pointers,
functions, etc. The first column of Table 1 shows function names
and the last columns shows function descriptions. The second col-
umn indicates whether the function is a notification on a system
state update (“U”), a runtime check (“C”), or both (“UC”). Calls to
state-updating functions are usually inserted after the state update
operation. Calls to runtime checking functions are often inserted
before the potentially harmful operation executes.

The code in Fig. 6 demonstrates how the code instrumentation
embeds interaction with the runtime monitor (displayed in italic)
in user code. For illustration purposes, the code omits some details
such as how ROSE-CIRM tracks type information, location infor-
mation, and loop variables. The code uses a function (compute at
line 3) to elements of a dynamically allocated array. Then the func-
tion sum (at line 14) calculates and prints the sum of all elements.
Note that the implementation contains a bug in line 6: Variable i is
initialized to 1 instead of 0. The value of values[0] remains unde-
fined. Function sum uses this undefined value later on.

Instrumenting compute adds calls to cirm EnterScope and
cirm ExitScope to keep track of the creation and destruction of
variables and parameters (e.g., at lines 4 and 11). The call of
cirm CreateVariable notifies the runtime monitor on the creation
of an (initialized) parameter.

The call to cirm AccessArray in line 7 checks whether the in-
dex i is within array bounds (i.e., whether the locations values[0]
and values[i] belong to the same innermost array). The call to
cirm InitVariable in line 9 notifies the runtime monitor that lo-
cation values[i] has been initialized. sum’s instrumentation in line
18 keeps track of variable res, which was initialized. Before res

is read, cirm AccessVariable checks that it was initialized (line
20). Line 21 checks that the array access is within bounds and that
the element was initialized (i.e., cirmRead). Line 29 allocates heap
memory for N values. The call in Line 30 notifies the runtime sys-
tem on the memory allocation. Line 30 notifies the runtime system

3 2011/9/29

#define N 8
2 void compute(int (∗ values)[N]) { /∗ Compute values of array elements ∗/
4 cirm EnterScope();

cirm CreateVariable(&values, sizeof(values), cirmStack, cirmInitialized);
6 for (int i=1; i<N; ++i) { /∗scope and variable instrumentation omitted∗/

cirm AccessArray(&(∗values)[0], &(∗values)[i], cirmWrite);
8 (∗values)[i] = ...;

cirm InitVariable(&(∗values)[i], sizeof((∗values)[i]));
10 }

cirm ExitScope();
12}
14 void sum(int (∗ values)[N]) { /∗ Add all array elements’ values ∗/

cirm EnterScope();
16 cirm CreateVariable(&values, sizeof(values), cirmStack, cirmInitialized);

int res = 0;
18 cirm CreateVariable(&res, sizeof(res), cirmStack, cirmInitialized);

for (int i=0; i<N; ++i) { /∗scope and variable instrumentation omitted∗/
20 cirmAccessVariable(&res, sizeof(res));

cirm AccessArray(&(∗values)[0], &(∗values)[i], cirmRead);
22 res = res + values[i];

24 cirm InitVariable(&res, sizeof(res));
}

26 printf(”sum = %i”, res); /∗ print result ∗/
cirm ExitScope();

28}
30 int main() { /∗ scope and call instrumentation omitted ∗/

int (∗values)[N] = (int (∗)[N]) malloc(sizeof(∗values));
32 cirm AllocMem(values, sizeof(∗values), akCHeap);

cirm CreateVariable(&values, sizeof(values), cirmInitialized);
34 compute(values);

sum(values);
36}

Figure 6. Instrumented sequential source code

about the declaration and initialization status of variable values.
ROSE-CIRM aborts the program and reports an error message,
when the uninitialized element values[0] is accessed (line 19).

Using the combined instrumentation and runtime support,
ROSE-CIRM for C/C++ is able to detect errors including erroneous
deallocations, accesses of unallocated memory, out of bound errors,
accesses to uninitialized memory, dangling pointers, unreachable
heap memory, mismatched function arguments, etc.

We have used the RTED benchmark [13, 14] to evaluate ROSE-
CIRM for C and C++. ROSE-CIRM passes most (96%) test pro-
grams of the respective RTED benchmark (excluding floating point
errors).

3. Extending ROSE-CIRM for UPC
In this section, we will discuss errors in UPC programs and the
challenges that UPC’s notion of a shared memory parallelism poses
for a ROSE-CIRM extension.

3.1 Errors in UPC Programs
UPC inherits vulnerabilities from C and shared memory parallel
programming. We group runtime errors according to their origin:

C style errors occurring in the private memory space of a UPC
thread do not involve parallelism. The ROSE-CIRM functionality
for C/C++ can handle such problems.

In UPC, similar (C style) errors involving the global shared
address space can occur. This includes array subscripts where the
index is out of bounds (e.g., p[expr1] when p is be a pointer to
shared), reading through a dangling pointer (e.g., when another
thread free the memory region), and reads of uninitialized values
(potentially initialized by other threads) from the shared memory
space. The presented extension for ROSE-CIRM addresses these
problems.

Similar to the C library, the UPC library functions specify pre-
conditions on arguments. Since UPC systems are not obliged to de-

void compute(shared int (∗ values)[N]) {
2 cirm EnterScope();

cirm CreateVariable(&values, sizeof(values), cirmStack, cirmInitialized);
4 upc forall (int i = 1; i < THREADS; ++i, &values[i]) {

cirm AccessArray(&(∗values)[0], &(∗values)[i], cirmWrite);
6 values[i] = ...;

cirm InitVariable(&(∗values)[i], sizeof((∗values)[i]));
8 }

cirm ExitScope();
10}

Figure 7. Parallel compute function

tect precondition violations, programmers must ensure that a spe-
cific argument tuple is valid. The current ROSE-CIRM implemen-
tation does not address these problems (although similar checks for
C library calls could be extended to handle UPC library calls).

Concurrency-induced vulnerabilities refer to problems such as
deadlocks, livelocks, and races. Detecting these problems is beyond
the scope of thipaper.

3.2 State Updates in a Partitioned Global Address Space
The implementation of a monitored execution environment for
UPC programs poses several new challenges. First, state updates
of the shared space must be made observable by other threads.
For example, a shared variable initialized by one thread must be
seen as initialized by other threads. Whether this is implemented
by a single shared or multiple distributed data structure is a design
choice. Our approach uses a separate runtime monitor for each UPC
thread. The runtime monitors exchange messages on state updates.

Fig. 8 shows the design. Each UPC thread has its own runtime
monitor. The instrumented code notifies the runtime system on state
updates and requests the validation of unsafe operations before they
are carried out. Unsafe operations are tested using the information
that the runtime system has available. Any update of the global
memory space’s state is communicated to the other runtime mon-
itors through message queues. Each thread has its own message
queue, where other threads can send their state updates.

Consider the compute/sum program from §2.3. Fig. 7 shows a
parallelized version of function compute. Thread 1 executes line 7
(e.g., values[1]=7) which writes to the global address space. Af-
ter the assignment, the instrumentation notifies runtime monitor 1
about the state update (cirm InitVariable in the code and black
solid arrow in the diagram). Since the memory location was pre-
viously uninitialized, the change of state must be shared with the
other runtime monitors. This is done by allocating memory for a
message in the memory partition of each receiving thread (using
upc global alloc). Then the sender (runtime monitor 1) copies the
message (values[1]=7 and green dotted arrows) to each receiver
and enqueues the message into the receiver’s queue (enqueue and
dequeue use locks). The order of messages can differ in each queue.
The sending thread’s local portion of the allocated memory is uti-

Figure 8. Runtime monitor communication

4 2011/9/29

lized as counter keeping track of how many receiving threads have
not processed the message (1 unread in Fig. 8).

We have modified ROSE-CIRM’s interface functions (Table 1)
to process the messages from the message queue whenever the run-
time monitor gets called. After a thread has processed (blue solid
arrow) the incoming message, it decrements the unread counter.
The diagram shows a program state where all but Thread 0 have
read the message, thus the counter is 1. The last thread frees the
memory and lock associated with the message.

In code prone to race conditions (where one thread writes and
the other thread reads a variable), the reading thread might receive
the notification too late. This data race scenario is discussed in §3.3.

The presented design assumes that state updates to global ad-
dress space are rare among all operations. Runtime checks can be
carried out without delays, because each runtime monitor has all
information available. Having separate runtime monitors in each
thread that communicate with each other also gives us control over
the time when those messages are processed (i.e., when a PGAS
state modifying operation becomes visible to a validation call). By
delaying the processing of runtime messages until the next thread
synchronization, some potential race conditions can be identified.

The downside of replication is that any global state modifying
operation needs to be broadcast to all other UPC threads. Consider
image convolution, where the pixel of a new image is calculated
from a pixel and its eight neighbors. Assuming each write operation
is a state update, each thread in our approach receives pixels ∗
THREADS−1
THREADS

update messages (one for each pixel written by other
threads) and sends pixels ∗ 1

THREADS
messages (one for each pixel

that the thread writes).

3.3 Runtime Error Detection and Race Conditions
Another challenge for runtime monitoring of parallel programs is
dealing with race conditions [16]. By race condition, we mean that
the outcome of an operation depends on the runtime order with
respect to another operation executed by a different thread.

We distinguish three kinds of race conditions:

• Early release problem: Some thread releases dynamic memory
and another thread writes to that location.
• Data race: One thread writes to a memory location and another

thread reads from or writes to the same location.
• Atomicity violation: Two operations, such as setting a value and

checking it, must be carried out indivisibly.

While ROSE-CIRM does not detect these hazards, the runtime
monitor has to prevent race conditions in the original code from
erroneously allowing an unsafe operation. To execute such opera-
tion combinations safely, we impose a runtime order on them. In
an effort to balance synchronization overhead and safety, we al-
low ROSE-CIRM to err conservatively. ROSE-CIRM never allows
unsafe operations, but it may spuriously report an error, if the mon-
itored program contains a race.

Early release problem: Consider the following code being exe-
cuted by more than one thread:

shared int∗ p = upc all alloc(THREADS, sizeof(int));
2 if (!p) return;
4p[MYTHREAD] = 0;
/∗ useful work using p is omitted here∗/

6 . . .
if (MYTHREAD == 0) upc free(p);

Line 1 collectively allocates shared memory with a size of
THREADS*sizeof(int) bytes. Each thread stores the beginning of
the allocated memory in a private-to-shared pointer variable p. If
the allocation was successful, line 4 zero-initializes each integer
value for each thread. In line 7, Thread 0 frees this memory. The

code is vulnerable to a race. Without synchronization between the
memory initialization and the deallocation, Thread 0 might free the
memory before all other threads have initialized and used their local
values in useful work.

Such early memory releases pose problems for safe execution
environments not relying on a garbage collector. Validating the op-
eration in line 4 and executing the operation are not atomic. We
consider the use of a reader-writer lock for every operation on dy-
namic shared memory as prohibitively expensive. Any concurrently
executing thread must be prevented from interleaving a shared
memory access test with a call to upc free. The runtime moni-
tor must provide some kind of synchronization between writes to
dynamically allocated shared memory and memory deallocations.
Our approach uses a safe collaborative work zone. Fig. 9 depicts
the states and state transitions of threads in this approach.

Figure 9. Work zone states and transitions

All threads start in the quiescent zone. In this state, they do
not participate actively in any program operation (threads wait, or
perform runtime monitor initialization/termination operations). In
order to enter the safe zone, threads check that no other thread
performs (or waits to perform) a destructive update (i.e., calls to
upc free). Once a thread enters the safe zone, all non-destructive
operations are allowed. Before a thread can carry out a destructive
heap operation it signals its intent to the other threads and waits
until all other threads have exited the safe zone. At any point in time
there can only be one thread that signals. Then, the thread proceeds
to carry out the unsafe operation, broadcasts the state update, and
clears the destructive zone. Threads can enter to the safe zone
when there is no other thread in or waiting for the destructive zone.
Before a thread enters a state where it cannot react to a signal, it also
has to exit from the safe zone. This includes blocking operations
(e.g., upc barrier, upc lock) and thread exits.

Checking whether another thread intends to conduct a destruc-
tive operation is performed upon entry of runtime monitor func-
tions. Entering in the destructive zone is implemented by adding
two functions (cirmBeginDestructive, cirmEndDestructive) to
the runtime monitor interface. The instrumentation phase wraps de-
structive operations. The following code snippet shows the instru-
mented line 7 from the previous example.

1 if (MYTHREAD == 0) {
cirmBeginDestructive();

3 upc free(p);
cirmEndDestructive();

5 }

In order to avoid deadlocks in our safe work zone scheme, all
threads entering a potentially blocking state (e.g., all collective op-
erations, upc lock) have to exit the safe zone. We have imple-
mented this approach by adding two runtime monitor functions
cirmEnterWorkzone and cirmExitWorkzone. The instrumentation
phases makes sure that threads exit and enter the work zone when
executing a blocking operation.

1 cirmExitWorkzone();
upc lock(some lock);

3 cirmEnterWorkzone();

5 2011/9/29

Figure 10. System state update and synchronization

We opted for this implementation (as opposed to using reader-
writer locks) because we assume memory deallocations and block-
ing operations occur rarely compared to shared memory accesses.
Consequently, this approach incurs little lock/unlock overhead in
loops accessing the global address space.

Data races: Reads are tested before the actual memory access
occurs. A read never causes a state update. When a write oper-
ations changes the system state (the memory location went from
uninitialized to initialized), the state update is communicated after
the write operation has finished. ROSE-CIRM processes state up-
date messages after synchronization statements (e.g., upc barrier,
upc notify). This suffices to properly check read and write oper-
ations as long as the original code is free of race conditions. In
Fig. 10, Thread 1 writes a value (W@T1) which triggers a state up-
date (the memory was initialized). The update is broadcast (B@T1)
to all other threads before the synchronization statement. After the
synchronization, all threads process the state update messages, be-
fore they proceed. Thus, any following read operation (R@T2) is
carried out after all messages that were sent before the synchro-
nization have been processed (P@T2).

ROSE-CIRM works with both the relaxed and strict memory
consistency models. Synchronization mechanisms relying on strict
memory consistency imply memory fences before and after the
strict operation. Thus checking operates the same way as with built-
in synchronization mechanisms. Only if there is a race between
W@T1 and R@T2, we permit ROSE-CIRM to spuriously report
an uninitialized value. Under the relaxed memory model an imple-
mentation must guarantee that a state update message (P@T2) can-
not be processed before the corresponding write operation (W@T1)
has been observed. This is guaranteed by an (implicit) memory
fence when the update message (U@T1) is enqueued in T2’s mes-
sage buffer.

ROSE-CIRM’s runtime system validates pointers after they
have been assigned new memory locations. For UPC’s shared
pointers to shared memory, this is problematic as other threads can
read the pointer value before it has been validated by the pointer
modifying thread. To avoid atomicity problems, ROSE-CIRM per-
forms shared pointer modification/validation and dereferences in a
critical region.

1// shared int∗ shared p = ...

3 cirmEnterSharedPointerOp();
p+=2;

5 cirmExitSharedPointerOp();

3.4 Address Handling
To access the global address space, UPC provides the notion of
shared variables and pointers. Pointers to shared memory encode
the thread number, the address in the global address space, and the
phase (the offset within the current block). In addition, the local
partition of the global address space can also be accessed using
regular C pointers. Shared memory addresses can be cast to C-style
pointers, but not vice versa.

To deal with local and global addresses uniformly, the ROSE-
CIRM runtime system uses an address abstraction with two fields in
forms of <thread id, local address> or <thread id, address offset>.
The runtime monitor uses the former to locate the state information
and the latter to communicate state updates. The thread id indi-
cates the owning UPC thread. The local address points to a valid

address within the address space of the current thread. When the
thread id indicates a remote address, the local address field denotes
the location in the remote thread projected on the current thread’s
global address space range. The address offset denotes an address
offset within the current thread’s global space range.

Consider two UPC threads, Thread 1 and Thread 2. In their own
address space, the global shared space starts at address 0x40 (lo-
cal global address base) and 0x60 respectively. A shared array that
starts at local address 0x50 in Thread 1 would start at local ad-
dress 0x70 in Thread 2. To keep track of the memory state in a uni-
form way, addresses in the global address space are communicated
in terms of offset from the shared memory base address. When
Thread 1 receives an update notification (e.g., cirmInitVariable)
on location <Thread 1, 0x50>, the communication system sends
the location as <Thread 1, 0x10> (addr offset = global addr - lo-
cal global addr base) to Thread 2. Thread 2 translates the address
offset back to its own local address space by adding back its shared
memory base. The address becomes <Thread 1, 0x70>.

For pointer checking, the runtime monitor has to dereference
an address. If the address resides in the shared space, our address
representation has to be converted into a shared-to-shared pointer in
order to utilize UPC’s dereference implementation. This conversion
depends on the particular shared pointer format in a UPC compiler
and runtime system.

Figure 11. UPC thread memory layout

The fact that C-style pointers can point to locations into the local
shared address space makes it impossible to use type information
to decide whether an operation modifies the shared heap. As illus-
trated in Fig. 11, we test instead whether an address falls within the
shared heap boundary. This technique also depends on the particu-
lar memory layout used by a UPC compiler and runtime system.

3.5 Bounds Checking
For regular C code, bounds checking is trivial. A memory access is
valid if a memory location lies within a specific address range. In
UPC, the order of two relative addresses depends on the specified
blocking factor. We illustrate the problem with an array layout for
a two-dimensional array depicted in Fig. 12:

The diagram shows the memory layout for a two-dimensional
character array in an UPC program with four threads with bounds
four (the number of UPC threads) and eight respectively. Each
array component is drawn in a different color. The number in
each cell denotes the linearized offset within the defined array.
(The four white cells at offset 32 to 35 belong to padding bytes).
The array chararr[0] ranges from address (actually, the offset
in each threads shared memory) 0x50 to address 0x51 in Thread
2. The blocking factor (3) determines how many elements are
consecutively allocated to a thread. Thus address 0x52 in Thread
0 is within chararr[0] and its relative order is before address 0x51
in Thread 2’s. Since, in this example, the blocking factor is not a
divisor of the total array size, the allocated space is larger than the
array. The first two threads host nine elements, the Thread 2 eight
elements, and Thread 4 six elements. The unused space (white cells
32-35) are padding bytes.

Other blocking factors produce different mappings from ad-
dresses to linearized offsets within an distributed array. For exam-

6 2011/9/29

Threads

Address 0 1 2 3

0x50 0 3 6 9

0x51 1 4 7 10

0x52 2 5 8 11

0x53 12 15 18 21

0x54 13 16 19 22

0x55 14 17 20 23

0x56 24 27 30 33

0x57 25 28 31 34

0x58 26 29 32 35

chararr[0]

chararr[1]

chararr[2]

chararr[3]

shared [3] char chararr[THREADS][8];

Figure 12. Array memory layout

ple, with a blocking factor of eight, every thread would own all
elements of a first dimension (e.g., Thread 0 hosts chararr[0], and
Thread 1 chararr[1], etc.). In this case, address 0x52 in Thread 0
would linearize before address 0x51 in Thread 1. If the blocking
factor is one, the characters are distributed in round robin fashion.
All elements of the first array dimension (chararr[0]) would reside
at addresses 0x50 and 0x51 of all threads. Address 0x52 in Thread
0 would linearize after address 0x51 in Thread 1.

The blocking factor is an integral component for array bounds
checking. ROSE-CIRM derives the blocking factor at memory al-
location time and stores this information together with the allocated
block. The runtime monitor uses the blocking factor to derive lin-
earized offsets for an address. Bounds checking tests whether the
linearized base offset and the linearized location belong to the same
array component. For multi-dimensional arrays, each subscript op-
eration is checked separately. Subsequently there exists a single
valid mapping from an array index to a linear address. Note UPC
allows pointers to shared’s blocking factor differ from the blocking
factor specified at allocation time. Such pointers are type checked
according to the block size given at allocation time, and not with
their actual block size.

3.6 Implementation
We have extended ROSE-CIRM’s instrumentation to handle UPC
specific constructs, such as upc forall, blocking factors, shared
memory allocations/deallocations. We also added the instrumenta-
tion to protect the code from race conditions (e.g., upc free is pro-
tected by cirmBeginDestructive() and cirmEndDestructive()).
The instrumentation follows the ROSE-CIRM approach to separate
the instrumentation from the original code. The shortcoming of this
approach is that memory accesses depending on function calls (e.g.,
arr[index()]) cannot be instrumented without side effects.

The runtime monitor has been implemented to work with GC-
CUPC [8, 12], but the approach can be ported to other UPC sys-
tems. We rely on two implementation specific techniques: (1) We
use information of GCCUPC shared pointer representation to con-
vert our own address abstraction back into UPC shared pointers. (2)
the shared memory base is read from a GCCUPC variable. Since
the address of the upper bound is not available, our implementation
uses the current top of the stack. Note that UPC does not require
the shared heap to be contiguous. Such a case can be handled by
including a shared heap descriptor in the address abstraction.

We added six synchronization functions (shown in Table 2)
to the runtime monitor interface. S indicates that these functions
only synchronize. Many existing runtime monitor interface func-
tions (shown in Table 1) have been extended to support UPC. For
example, the following functions have been extended to update
the system state and trigger communication among runtime moni-
tors: cirmAllocMem for upc alloc and upc global alloc (note, as
a collective operation upc all alloc does not need communica-

Function Action Description
Synchronization Functions

cirmExitWorkzone S Stops operating in safe mode
cirmEnterWorkzone S Starts operating in safe mode
cirmBeginDestructive S Waits until other threads have left

the safe workzone
cirmEndDestructive S Ends the destructive operation
cirmEnterSharedPtrOp S Starts a shared pointer to shared

operation.
cirmExitSharedPtrOp S Ends a shared pointer to shared

operation.

Table 2. UPC related functions added to the runtime monitor

tion), cirmFreeMemory for upc free, cirmInitVariable for writes
to uninitialized shared memory, and cirmMovePointer for changes
to pointers (both shared and local) that point to shared memory.

Another concern of this project was code reuse as the existing
ROSE-CIRM consists of about 7500 lines of C++ code (including
comments and empty lines), which makes extensive use of data
structures (i.e., arrays, maps, and hash tables) of C++ STL and its
extensions. However, C++ STL and its extensions do not support
the concept of PGAS. The lack of similar data structures that can
be placed in the global address space prompted us to pursue an
implementation where each thread owns a local (possibly partial)
copy of the system state. Note the C++ STL designers provided
for tailoring their data structures to specific memory allocation
requirements. This is typically accomplished by instantiating data
structures with customized allocators. While, in principle, a shared
memory allocator could acquire memory from the global address
space, this approach remains insufficient due to the inability to
make pointers to the shared space work within ISO C++.

4. Evaluation
This section evaluates our tool for its accuracy and overhead using
the RTED benchmark suite [13, 14] and a few error free codes.
Table 3 summarizes the system configuration of our evaluation.

Hardware Intel X5680 (6x2 cores) clocked at 3.3Ghz
Memory 24GByte
OS Red Hat Enterprise Linux Client 5.6
C++ compiler g++ (4.1.2-50) Red Hat
UPC compiler GCCUPC (4.5.1.2)

Table 3. Test system configuration

We compiled the test codes without optimizations and linked
them to the compiler optimized ROSE-CIRM runtime library. De-
pending on the test, we employed between 2 and 12 UPC threads.
We report the average run-time of ten runs in seconds.

4.1 Accuracy of Dynamic Analysis
The RTED benchmark suites [13, 14] test whether certain defects
of C, C++, Fortran, and UPC programs are detected and properly
reported by compilers, runtime systems or third party tools. Each
test suite contains programs exhibiting a specific software defect.
For each test, the suite defines an example of a good error message.

The RTED suite is organized in several error categories. For
example, the RTED C suite tests the following runtime error cate-
gories: memory allocation/ deallocation, array index out of bounds,
floating point, IO related, memory leaks, pointer, string, function
invocation, uninitialized variables, and C99 specific defects. The
RTED UPC test suite contains the following additional error cat-
egories: deadlocks, races, out of bounds indices, out of bounds
pointer accesses, out of bounds accesses involving UPC functions,

7 2011/9/29

Category Number Correctly Identified
of tests (in percent)

Out of bounds accesses (indices) 726 685 (94%)
Out of bounds accesses (pointers) 160 150 (94%)
Uninitialized memory reads 64 62 (97%)
Dynamic memory handling related 10 10 (100%)

Table 4. RTED UPC benchmark

bad arguments to UPC functions, uninitialized memory reads, dy-
namic memory handling related, and wrong order of UPC function
invocation. In this paper, we focused on porting the existing ROSE-
CIRM detection mechanism to support the global address space.
The RTED error categories, printed in italics, are related to paral-
lelism or UPC build-in functions. These categories are not within
the scope of this work. The RTED for UPC benchmark suite is de-
signed to work with four UPC threads.

1 shared double arr x[THREADS∗4]; /∗DECLARE1∗/
shared double ∗ptr x;

3 int main() {
5 upc forall(int i=0;i<THREADS∗4;i++;i) arr x[i] = THREADS + i;

upc barrier;
7 if(MYTHREAD == THREADS − 1){
9 if(zero()) ptr x = (shared double ∗) &arr x[0];

11 double var res = (∗ptr x) + MYTHREAD∗THREADS; /∗ RTERR ∗/
}

13}

Figure 13. RTED benchmark c G 2 c D.upc

Fig. 13 shows an example from the RTED benchmark suite. In
line 11, ptr x has not been set, thus *ptr x dereferences NULL.
The program declares a shared array (line 1) and a pointer to a
shared double (line 2). The upc forall loop in line 5 initializes
the array. One of the threads enters the following if statement.
In line 9, if’s condition (call to zero) always returns false. Note
zero is implemented via a function call to prevent it from being
easily analyzed. Thus, the error cannot be flagged with certainty at
compile time. At run-time, ptr x remains set to NULL and reading
its value should be reported.

While testing against the RTED benchmark suite, ROSE-CIRM
found a few unplanned bugs in the test programs. For example, the
expected source line number mismatches the line number where
the error occurs, or some tests unintentionally freed stack memory.
Table 4 shows the results obtained for tests we regard as correct
before the marked error occurs. To assess our results, we compare
the line number of the reported error against the location defined
in the benchmark suite. We do not judge the conformance of the
produced error message.

ROSE-CIRM detects most errors in the benchmark programs.
Programs where ROSE-CIRM does not report the runtime error
correctly involve subtle out of bounds accesses in dynamically
allocated multi-dimensional arrays (§2.3) and code portions that
are currently not instrumented (i.e., array subscripts depending on
function calls).

4.2 Overhead of Dynamic Analysis
To determine the overhead of runtime monitoring, we conducted
tests with a simple (Fig. 14) loop that only updates a single variable
in the private space. We have removed other access checks such as
cirmAccessVariable.

The runtime overhead ratio is a factor of 230. Compiling the test
programs with optimizations increases the overhead of the safe ex-
ecution environment, as the instrumented calls prevent aggressive
compiler optimizations.

1 long res = 0;
cirmCreateVariable(&res, sizeof(res), cirmInitialized, cirmStack);

3 for (long i = 0; i < 100000000 ; ++i) {
res = i + res;

5 cirmInitVariable(&res, sizeof(res));
}

Figure 14. Overhead of instrumentation

We also tested ROSE-CIRM against two error free programs,
N-Queens code and heat conduction, provided by El-Ghazawi et.
al [7]. Both programs have a relatively small core that determines
performance. This makes the codes easy to analyze.

The N-Queens program [7, pp 67–71] is a parallel implementa-
tion that determines the number of solutions to the N-Queens prob-
lem that exist for an NxN board. The program can be parallelized
without extensive use of the partitioned global address space. The
problem space is split into THREADS partitions which are solved
independently. The only use of shared memory is to store the num-
ber of solutions each thread finds. Thread 0 waits until all threads
have finished and sums the results. We tested the program with a
13x13 board. We varied the number of threads from 1 to 12. Table 5
summarizes the results. The timing results are stated in seconds.

Approach / Threads 1 4 8 12
Un-monitored (s) 0.29 0.08 0.04 0.02
ROSE-CIRM orig. (s) 141.0 41.4 22.5 14.4
ROSE-CIRM opt. (s) 10.9 3.2 1.7 1.1
Overhead ratio - orig. 484.4 516.9 561.4 625.3
Overhead ratio - opt. 37.6 40.2 43.4 48.1

Table 5. N-Queens: runtime monitoring overhead

We found the instrumented code runs about 550 times slower.
The performance hit is primarily caused by the amount of collected
data and performed tests. The major factor impacting performance
in this example is recursion: The N-Queens code uses recursion to
count the number of solutions. For each function call, ROSE-CIRM
keeps track of parameters and local variables. Thus each recursion
level adds overhead for automatic storage management.

We used the Oracle studio profiler to pinpoint the runtime over-
head when four UPC threads are used. Table 6 lists how much
overhead is incurred by each runtime monitor function and how of-
ten these functions are called. The number in percent indicates the
share of the total runtime overhead. We omit functions that have
less than a 5% share.

ROSE/CIRM function Share times called
Function Call

cirmCreateVariable 22.51% 24965801
cirmEnterScope 5.79% 78759963
cirmExitScope 16.62% 78759963

Variable Access
cirmInitVariable 27.70% 78760699
cirmAccessVariable 21.83% 162674801

Table 6. N-Queens : profile

The entries in the first section are roughly related to N-Queens’
recursive function implementation. More than 22.5% of the over-
head is related to variable creations. cirmExitScope cleans up all
variables associated with the scope, thus its share on the over-
head is larger than cirmEnterScope. Approximately half of the
overhead is spent on updating and checking the status of memory
(cirmInitVariable and cirmAccessVariable).

8 2011/9/29

Since the overhead is significant, we assessed by how much sim-
ple (non UPC specific) intraprocedural static analysis can improve
performance. We manually performed the following optimizations:

• reaching definitions: If the use of a local variable has a reaching
definition, we can eliminate calls to cirmAccessVariable.
• simple escape analysis: If the address of a variable (or pa-

rameter) was not taken, any accesses are local. If there is no
cirmAccessVariable call on the variable, we can eliminate
cirmInitVariable and cirmCreateVariable calls. Moreover,
if a scope does not track any variables we can eliminate the
calls to cirmEnterScope and cirmExitScope.
• array bounds checking: ROSE-CIRM’s bounds checks are ex-

pensive because arrays are treated like pointers. Each call to
cirmAccessArray retrieves the information based on the base
address. Then the two addresses are linearized §3.4 and checked
whether they belong to the same innermost array. If the array
bounds are statically known (e.g., the subscript operator oper-
ates not on a pointer), we can check all but the last array sub-
script operation with a simple value comparison. Assume an ar-
ray declaration int arr[4][3] and an array access arr[x][y].
Here we can replace the call to cirmArrayAccess(&arr[0],

&arr[x]) with a simple bounds check 0 <= x && x < 4.

In the N-Queens code, these optimizations eliminate the check-
ing of all local variables. Table 5 shows that, on average, runtime
overhead decreases from 547 to 42.

The heat conduction program [7, pp 54–62] models heat trans-
fer. Values are stored in a globally defined four dimensional grid.
shared [BLOCKSIZE] double grids [2][N][N][N];

The first dimension, containing two elements, stores the initial
values and the results for each time step. In odd-numbered time
steps, grid[1] is computed from grid[0], and vice versa for even-
numbered time steps. Each element is calculated by considering
its six neighboring elements. In addition, the heat conduction code
globally defines a shared array where each processor stores the lo-
cal transferred heat maximum. The iteration stops when the global
maximum falls under a predetermined limit. UPC (like C99 and
C++) zero initializes data that has static lifetime. By default, ROSE-
CIRM treats global data as uninitialized. To allow informed pro-
grammers to rely on the standard behavior, ROSE-CIRM offers a
switch to change the initialization status of global variables.

We tested the code using a block size of one, a grid with 80 el-
ements per dimension, and the code running on eight UPC threads.
We varied the number of iterations from 10 to 40. Table 7 shows
the obtained results. For each test we timed the grid initialization,
the first iteration, the last iteration, and the total time. The time is
stated in seconds.

Grid initialization and the first loop iteration is the only code
portion that incurs overhead due to runtime monitor synchroniza-
tion. There is no message exchanged after the first iteration has
completed. grid[0] has been initialized upfront; grid[1] and the
array storing the locally transferred maximum have been computed
during the first iteration. Every subsequent iteration runs faster (see
the last iteration data).

The overall performance penalty of the runtime monitor is a
factor of 146 for 10 iterations. The performance penalty decreases
as the number of iterations increases because the synchronization
overhead can be amortized over more iterations. The lower bound
for the program overhead can be derived from the overhead of the
last iteration (about a factor of 120 and 50 for the unoptimized and
optimized code respectively). The two major performance impact-
ing factors are: (1) synchronization overhead, as each thread repli-
cates the initialization state for the entire grid. This overhead be-
comes more dominant in the optimized code. (2) bounds checking,

Init First Last Total
10 iterations

Un-monitored (s) 0.007 0.023 0.026 0.23
ROSE-CIRM orig. (s) 2.57 3.78 2.95 33.48
ROSE-CIRM opt. (s) 1.26 4.09 1.25 19.23
Overhead ratio orig. 367.0 164.2 113.5 146.8
Overhead ratio opt. 179.3 177.7 48.1 84.3

20 iterations
Un-monitored (s) 0.01 0.020 0.022 0.45
ROSE-CIRM orig. (s) 2.54 3.81 2.96 63.19
ROSE-CIRM opt. (s) 2.46 3.41 1.24 32.24
Overhead ratio orig. 254.3 190.5 134.7 140.4
Overhead ratio opt. 246.3 170.3 56.4 71.7

40 iterations
Un-monitored (s) 0.006 0.024 0.024 0.89
ROSE-CIRM orig. (s) 2.61 3.82 2.99 123.71
ROSE-CIRM opt. (s) 2.05 3.58 1.23 56.20
Overhead ratio orig. 434.3 159.3 124.8 139.0
Overhead ratio opt. 341.3 149.0 51.4 63.1

Table 7. Heat transfer: runtime monitoring overhead

as the inner loop of each iteration, contains 32 bounds checks (eight
array accesses times four dimensions). The overhead in column la-
beled Last can be almost exclusively attributed to bounds checking.

Table 8 gives an overview of how much of the overhead can
be allocated to each function. Functions with an overhead share of
less than 5% are not displayed. The overhead to synchronize data
with the other runtime monitors is shown at the bottom of the table.
Note that sending overhead is incurred across all state updating
functions. The receive overhead is incurred across all functions, as
each of them processes incoming messages.

ROSE/CIRM Share Share Share
function 10 iterations 20 iterations 40 iterations

Variable Access
cirmAccessArray 75.8% 78.2% 79.4%
cirmAccessVariable 10.0% 10.13% 10.0%
cirmInitVariable 9.6% 7.1% 5.7%

Communication overhead
send 4.2% 2.4% < 1%
receive 2.9% 1.5% < 1%

Table 8. Heat transfer : profile

Again, since the overhead is significant, we manually performed
optimizations relating to reaching definitions, simple escape anal-
ysis, and array bounds checking. The code benefits mainly by re-
ducing bounds checking overhead. For example, the total overhead
ratio is reduced from 140 to 72 for 20 iterations.

5. Related Work
UPC compilers and runtime systems offer support for runtime
error detection to a varying degree. In our tests with the Berkeley
UPC system, we found that it can report invalid pointers to shared
memory locations. The developers of the RTED UPC test suite [14]
report that the tested compilers and runtime systems (Berkeley,
HP, GCCUPC, to some degree Cray) do little to prevent harmful
operations and report the responsible source code location. We are
not aware of other dynamic bug finding tools for UPC.

A number of dynamic analysis tools exist that work on source
code level. ParaSofts Insure++ [17] is a runtime analysis and mem-
ory error detection for multi-threaded C and C++. IBMs Purify [21]
is a dynamic software analysis tool to help memory debugging and
memory leak detection. Both tools are proprietary software and per-
formed well on the RTED benchmark suites for C and C++ [15].

9 2011/9/29

Intel Inspector [11] (formerly Intel Thread Checker) is a runtime
analysis tool for sequential and multi-threaded Windows and Linux
applications. Dmalloc [1] is a open source memory debugger C li-
brary for finding memory allocation errors. Programs to be ana-
lyzed must be recompiled to use Dmalloc memory functions.

Dynamic analysis can also be operate on binary codes. For ex-
ample, DynInst [2] is a runtime code-patching library that is useful
in developing dynamic programming analysis tools. Valgrind [3]
is an open source instrumentation framework for building dynamic
analysis tools. Pin [5] is a dynamic instrumentation tool for binary
executables. Compared to source level tools, binary tools can see
the whole program but they often lack of high level type informa-
tion, which makes it hard to find all errors.

6. Conclusion and Future Work
In this paper, we have presented ROSE-CIRM for UPC, a dy-
namic analysis tool that reports C-style runtime errors in UPC
code. ROSE-CIRM for UPC uses the combined compiler instru-
mentation and runtime support to monitor the execution of UPC
programs and identify C-style errors within a partitioned global ad-
dress space. Our evaluation indicates that our tool can spot 95%
to 100% of UPC runtime errors for the covered categories of
the RTED benchmark suite. Our tests also indicate that the run-
time overhead introduced by the monitored execution environment
can be prohibitive for larger size software. However, even sim-
ple static analysis techniques may dramatically reduce the run-
time overhead. ROSE-CIRM’s source code is distributed together
with ROSE with a BSD style license. It can be downloaded from
rosecompiler.org.

ROSE-CIRM for UPC can be improved to find more bugs re-
lated to concurrency, such as race and dead lock detection. The
instrumentation and runtime monitor can be improved to handle
a larger variety of UPC programs. In particular, this includes pro-
grams relying on UPC’s library functions, code that accesses shared
memory regions with varying blocksizes (by means of pointer
casts), and complex array subscript expressions.

Performance issues in C/UPC/C++ can be addressed by integrat-
ing with ROSE’s existing static analysis tools (e.g., Compass [19]).
Large scale parallel systems will benefit from improvements to the
runtime monitor design. The runtime monitor relies on a simple
queue implementation, thus concurrent PGAS state modifying op-
erations serialize at the communication infrastructure. Broadcast-
ing and replicating the information in each thread diminishes paral-
lelism. Two alternative approaches may be used to maintain the sys-
tem state across runtime monitors consistent: query/response style
communication mechanism and a single shared data structure.

Instead of relying on a simple message system, the runtime sys-
tems in each thread could use a query/response approach. Each
thread would query other threads for information that is not locally
available. While such an approach is more complex to implement,
it would scale better. On massively parallel systems, programmers
minimize remote shared memory accesses by storing memory that
is frequently accessed together in the same address space partition
(blocking). These optimizations would also benefit the query/re-
sponse based approach because reducing remote shared memory
accesses automatically reduces the number of remote state queries.

Using a shared data structure to store the (global) state would
dispense with explicit message exchanges. An implementation
based on shared maps (i.e., red-black trees) and hash tables re-
quires protection mechanisms to ensure data consistency. Using a
coarse-grain lock to control access to the data structure would seri-
alize all update operations (reader- writer locks would allow at least
concurrent reads). Integrating fine-grained locks that protect only
portions of the shared data structure or relying on non-blocking
synchronization [9] is a non-trivial effort.

Acknowledgments
We thank Michael Driscoll, Rajesh Vanka, and the anonymous ref-
erees for their comments and suggestions. This work was funded by
the department of defense and used elements at the Extreme Scale
Systems Center, located at Oak Ridge National Laboratory. This
work performed under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.

References
[1] Dmalloc. http://dmalloc.com/.
[2] Dynist: An Application Program Interface (API) for Runtime Code

Generation. http://www.dyninst.org/.
[3] Valgrind. http://valgrind.org/.
[4] Open Fortran Parser. http://fortran-parser.sourceforge.net/
[5] Pin - A Dynamic Binary Instrumentation Tool.

http://www.pintool.org/.
[6] Edison Design Group. C++ front-end. http://www.edg.com.
[7] Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine

Yelick. UPC: Distributed Shared-Memory Programming. Wiley-
Interscience, 2003. ISBN 0471220485.

[8] Gary Funck. GPC/UPC 4.0, ”flexible heap” design overview. Techni-
cal report, Intrepid Technology Inc., Sep 2006.

[9] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-
word compare-and-swap operation. In 16th International Conference
on Distributed Computing, DISC ’02, pages 265–279, London, UK,
UK, 2002. Springer-Verlag. ISBN 3-540-00073-9.

[10] Hex-Rays SA. IDA Pro Disassembler and Debugger.
http://www.hex-rays.com/idapro/.

[11] Intel Corporation. Inspector XE 2011 from Intel.
http://software.intel.com/en-us/articles/
intel-inspector-xe/.

[12] Intrepid Technology Inc. GCC Unified Parallel C (GCC UPC).
http://www.gccupc.org/. retrieved on 10th June 2011.

[13] Iowa State University. Runtime error detection test suites.
http://rted.public.iastate.edu, 2009.

[14] Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva, Ying
Xu, Elizabeth Kleiman, and Olga Weiss. Evaluating error detection
capabilities of UPC run-time systems. In Third Conference on Parti-
tioned Global Address Space Programing Models, PGAS ’09, pages
7.1 – 7.4, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-836-
0. doi: 10.1145/1809961.1809971.

[15] Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva, Ying
Xu, Mi-Young Park, Elizabeth Kleiman, Olga Weiss, Andrew Wehe,
and Melissa Yahya. The importance of run-time error detection. In
Third Parallel Tools Workshop, 2009.

[16] Robert H. B. Netzer and Barton P. Miller. What are race con-
ditions?: Some issues and formalizations. ACM Lett. Program.
Lang. Syst., 1(1):74–88, March 1992. ISSN 1057-4514. doi:
10.1145/130616.130623.

[17] Parasoft. Automatic C/C++ runtime error detection with Parasoft
Insure++. White Paper, 2005.

[18] Program Office Strategic Planning and Economic Analysis Group. The
Economic Impacts of Inadequate Infrastructure for Software Testing.
National Institute of Standards & Technology, May 2002.

[19] Dan Quinlan et al. ROSE Compiler Infrastructure.
http://www.rosecompiler.org/.

[20] Daniel Quinlan and Thomas Panas. Run time error detection (RTED).
Project Report. Lawrence Livermore National Laboratory, 2010.

[21] Rational Software. Releasing better software faster with Rational
Purify and Rational Quantify. Rational Software White Paper, 2000.

[22] The UPC Consortium. UPC language specification v1.2, June 2005.

10 2011/9/29

